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The Neutrino Revolution
(1998 – …)

Neutrinos have nonzero masses!

Leptons mix!
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Neutrinos are Special

The constituents of matter:
quarks, charged leptons, neutrinos.

Apart from the neutrinos, the lightest of these
constituents is the electron.

But —
      Neutrino masses ~ 10-(6 – 7) x Electron mass

Neutrino masses, while nonzero, are very tiny.
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           Quark mixing angles are small.

But Leptonic mixing angles are large.

The quarks and charged leptons, being electrically
charged, cannot be their own antiparticles.

Neutrinos might be their own antiparticles: ν = ν.

Neutrino mass probably has a different origin than
the masses of the other constituents of matter.



4

Neutrino Mass is Physics
Beyond the Standard Model

The most popular theory of why neutrinos are so light
is the —

See-Saw Mechanism

ν

MA big mass at a
high mass scale

Familiar
light
neutrino

}
{
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The see-saw mechanism suggests that the big
mass M, and the physics behind neutrino mass,

are at ~1015 GeV.

This puts the physics of neutrino mass way
beyond the domain of the Standard Model.
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Neutrinos and the Universe
  Neutrinos and photons are far and away the most

abundant particles in the universe.

If    we           wish to understand the universe, we must
understand neutrinos.

  Neutrinos have played a role in shaping the large-scale
structure of the universe.

Observations of that structure have yielded information
on neutrino mass.

  The see-saw mechanism predicts heavy neutrino “see-
saw partners” to the light neutrinos.

Decays of these heavy neutrinos in the early universe
may have been the origin of the excess of matter over
antimatter in the universe.
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The Plan for Part One
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Neutrino Oscillation in Vacuum
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What What HasHas
Been SeenBeen Seen
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The Neutrino Mass Spectrum
What Has Been Learned
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See-Saw Mechanism

ν

N
Very
heavy
neutrino

Familiar
light
neutrino

}
{Physics of Neutrino Mass
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TheThe  OpenOpen
QuestionsQuestions
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To Demonstrate That ν = ν:
Neutrinoless Double Beta Decay [0νββ]

νiνi

W– W–

e– e–

Nuclear ProcessNucl Nucl’

∑
i Does ν = ν?
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Probability [ N →  e- + … ]  ≠   Probability [ N →  e+ + … ]

Matter     antimatter

                                  in the early universe.

Are Neutrinos the Origin of

the Matter–Antimatter

Asymmetry of the Universe?

Leptogenesis
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Neutrino OscillationNeutrino Oscillation
in Vacuumin Vacuum
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Neutrinos Come in at Least Three Flavors

The known neutrino flavors: νe  ,   νµ  ,  ντ

Each of these is associated
with the corresponding
charged-lepton flavor: e   ,   µ  ,   τ
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The Meaning of this Association

νe Detectorνe

e
W boson

Short Journey

e

νµνµ

µ µ

W

ντντ

τ τ

W
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Over short distances, neutrinos do not change flavor.

ντ νµ

µ τ

W

Short Journey

Does Not Occur

But if neutrinos have masses, and leptons mix, neutrino
flavor changes do occur during long journeys.
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Let Us Assume Neutrino Masses
and Leptonic Mixing

Neutrino mass —
There is some spectrum of 3 or more neutrino mass

eigenstates νi:

(Mass)2

ν1
ν2

ν3
ν4

Mass (νi) ≡  mi
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Neutrino mixing —

When W+ → lα+  +  να  ,

the produced neutrino state  |να> is
|να > = Σ U*αi |νi>  .

Neutrino of flavor α    Neutrino of definite mass mi
               Leptonic Mixing Matrix

le ≡ e, lµ ≡ µ, lτ ≡ τ

e, µ, or τ

i
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Another way to look at W decay:

A given lα+ can be accompanied by any νi.

Amp(W+ → lα+ + νi) = U*αi

is  |να > = Σ U*αi |νi> .

The neutrino state |να > produced together with lα+

i
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According to the Standard Model, extended to
include neutrino mass and leptonic mixing —

 The number of different νi is the same as the
number of different lα (3).

 The mixing matrix U is 3 x 3 and unitary:
       UU† = U†U = 1.

Some models include “sterile” neutrinos —
neutrinos that experience none of the known forces
of nature except gravity.

In such models, there are N > 3 νi, and U is N x N,
but still unitary.
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Just as each neutrino of definite flavor να is a
superposition of mass eigenstates νi, so each
mass eigenstate is a superposition of flavors .

From |να > = Σi U*αi |νi> and the unitarity of U,

 |νi > = Σα Uαi | να > .

The flavor-α fraction of νi is —

    |<να|νi>|2 = |Uαi|2 .
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The Standard Model (SM) description of neutrino
interactions (not masses or leptonic mixing) is
well-confirmed.

We will assume it is true, and extend it to include
mixing.

For the lepton couplings to the W boson, we then
have —

  

! 

LSM = "
g

2
l L#$

%&L#W%
" + & L#$

%
lL#W%

+( )
#=e,µ,'
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Left-handed

Taking mixing into account
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Neutrino Flavor Change (Oscillation) 
in Vacuum

W W

!

Source Target

l"(e.g. µ)
+

l#(e.g. $)
-

(να)                             (νβ)

Approach of 
B.K. & Stodolsky( )

Amp 

Uαi* UβiProp(νi)
W W

Source Target

!i

l"
+ l#

-

=$Amp

i
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Amp [να→νβ] = ΣUαi* Prop(νi)Uβi

What is Propagator (νi) ≡ Prop(νi)?

In the νi rest frame, where the proper time is τi,

Thus,

Then, the amplitude for propagation for time τi 

is —

i
∂

∂τi

|νi(τi) >= mi|νi(τi) > .

|νi(τi) >= e
−imiτi |νi(0) > .

Prop(νi) ≡< νi(0)|νi(τi) >= e
−imiτi .
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In the laboratory frame —

The experimenter chooses L and t.

They are common to all  components of the 
beam.

For each νi, by Lorentz invariance,

miτi = Eit - piL .

ν
Time t

Distance L



4

Neutrino sources are ~ constant in time.

Averaged over time, the

e-iE1t – e-iE2t            interference

is —

< e-i(E1-E2)t >t  =  0

unless E2  = E1  .

Only neutrino mass eigenstates with a common 
energy E are coherent. (Stodolsky)
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For each mass eigenstate ,

Then the phase in the νi propagator exp[-imiτi] is —

miτi = Eit – piL = Et – (E – mi
2/2E)L

= E(t – L) + mi
2L/2E  .

pi =

√
E2

− m2
i
∼= E −

m2
i

2E
.

~

Irrelevant overall phase —

}
↑
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Amp [να → νβ]

Uαi* UβiProp(νi)
W W

Source Target

!i

l"
+ l#

-

=$Amp

i

=

∑

i

U
∗

αie
−im2

i
L

2E Uβi

e
−im

2

i
L

2E
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Probability for Neutrino Oscillation 
in Vacuum

P (να → νβ) = |Amp(να → νβ)|2 =

+2
∑

i>j

!(U∗

αiUβiUαjU
∗

βj) sin(∆m
2

ij

L

2E
)

where ∆m
2

ij ≡ m
2

i − m
2

j

= δαβ − 4
∑

i>j

"(U∗

αiUβiUαjU
∗

βj) sin2(∆m
2

ij

L

4E
)
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For Antineutrinos –

We assume the world is CPT invariant.

Our formalism assumes this.
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+2
∑

i>j

!(U∗

αiUβiUαjU
∗

βj) sin(∆m
2

ij

L

2E
)

P (να → νβ) =

Thus,

A complex U would lead to the CP violation 
P (να → νβ) "= P (να → νβ) .

(—)              (—)

(—)

= δαβ − 4
∑

i>j

"(U∗

αiUβiUαjU
∗

βj) sin2(∆m
2

ij

L

4E
)

P (να → νβ)
CPT
= P (νβ → να) = P (να → νβ ;U → U

∗)
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— Comments —
1. If all mi = 0, so that all Δmij

2 = 0,

P (να → νβ) = δαβ
Flavor change ⇒ ν Mass

2. If there is no mixing,

⇒ UαiUβ≠α,i = 0, so that P (να → νβ) = δαβ.

Flavor change ⇒ Mixing

(—)              (—)

(—)           (—)

W

l!

"i

W

l# !

"j i

but

always same "i

≠

≠
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3. One can detect (να → νβ) in two ways:

See νβ≠α in a να beam (Appearance)

See some of known να flux disappear (Disappearance)

4. Including h and c

                                             becomes appreciable when 

its argument reaches O(1).

An experiment with given L/E is sensitive to

sin2[1.27∆m
2(eV)2

L(km)

E(GeV)
]

∆m
2(eV2)

>
∼

E(GeV)

L(km)
.

∆m
2

L

4E
= 1.27∆m

2(eV2)
L(km)

E(GeV)



12

5. Flavor change in vacuum oscillates with L/E. 
Hence the  name “neutrino oscillation”. {The 
L/E is from the proper time τ.}

6. P (να → νβ) depends only on squared-mass 
splittings. Oscillation experiments cannot 
tell us

(—)              (—)

????

(mass)2

!3

"m32
2

!2
!1

}"m21
2

}

0
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7. Neutrino flavor change does not change the 
total flux in a beam.

It just redistributes it among the flavors.

But some of the flavors β≠α could be sterile.

Then some of the active flux disappears:

∑

All β

P (να → νβ) = 1
(—)                  (—)

φνe
+ φνµ

+ φντ
< φOriginal
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8. Assuming all coherent νi in a beam have a 
common momentum p, rather than a common 
energy E, is a harmless error.

This assumption leads to the same P(να → νβ).
(—)              (—)
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Three Flavors
For β ≠ α, 

 

Amp∗(να → νβ) =
∑

i

UαiU
∗

βie
im2

i
L

2Ee
−im

2

1

L

2Ee
−im

2

1

L

2E

= Uα3U
∗

β3e
2i∆31 + Uα2U

∗

β2e
2i∆21

+Uα1U
∗

β1
−(Uα3U

∗

β3 + Uα2U
∗

β2)
︸ ︷︷ ︸

Unitarity

= 2i[Uα3U
∗

β3e
i∆31 sin ∆31 + Uα2U

∗

β2e
i∆21 sin ∆21]

where ∆ij ≡ ∆m
2

ij

L

4E
≡ (m2

i − m
2

j )
L

4E
.

Important Special Cases
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Here δ32 ≡ arg(Uα3U
∗

β3U
∗

α2Uβ2) , a CP − violating phase.

P (να → νβ) =
∣
∣
∣e

−im2

1

L

2E Amp∗(να → νβ)
∣
∣
∣

2

= 4[|Uα3Uβ3|
2 sin2 ∆31 + |Uα2Uβ2|

2 sin2 ∆21

+2|Uα3Uβ3Uα2Uβ2| sin ∆31 sin ∆21 cos(∆32 + δ32)] .

Two waves of different frequencies, 
and their CP interference.

(—) (—) (—) (—)

(—)
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When One Big Δm2 Dominates

Δm2
These splittings are 

invisible if

For no flavor change,

For β ≠ α, 
P (να → νβ) ∼= Sαβ sin2(∆m

2 L

4E
) ; Sαβ ≡ 4

∣∣∣∣∣∣

∑

i Clump

U
∗

αiUβi

∣∣∣∣∣∣

2

.

P (να → να) ∼= 1 − 4Tα(1 − Tα) sin2(∆m
2 L

4E
) ; Tα ≡

∑

i Clump

|U∗

αi|
2

.

“i Clump” is a sum over only the mass eigenstates on one 
end of the big gap Δm2.

(—)            (—)

(—)            (—)

∆m
2
L

E
= O(1).



18

When There are Only Two Flavors 
and Two Mass Eigenstates

!
2

!
1

"m2

ν1          ν2

Mixing angle

(—)             (—)

U =
να

νβ

[
cos θ sin θ

− sin θ cos θ

]
; Sαβ = 4Tα(1 − Tα) = sin2 2θ

P (να ↔ νβ) = sin2 2θ sin2(∆m
2

L

4E
) .For β ≠ α, 

For no flavor change, P (να → να) = 1 − sin2 2θ sin2(∆m
2

L

4E
).

(—)             (—)


